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Abstract
Graph neural networks (GNNs) have been inten-
sively studied in various real-world tasks. How-
ever, the homophily assumption of GNNs’ aggre-
gation function limits their representation learning
ability in heterophily graphs. In this paper, we shed
light on the path level patterns in graphs that can ex-
plicitly reflect rich semantic and structural informa-
tion. We therefore propose a novel Structure-aware
Path Aggregation Graph Neural Network (PathNet)
aiming to generalize GNNs for both homophily
and heterophily graphs. Specifically, we first in-
troduce a maximal entropy path sampler, which
helps us sample a number of paths containing struc-
tural context. Then, we introduce a structure-aware
recurrent cell consisting of order-preserving and
distance-aware components to learn the semantic
information of neighborhoods. Finally, we model
the preference of different paths to target node after
path encoding. Experimental results demonstrate
that our model obtains significant improvements
in node classification on both heterophily and ho-
mophily graphs.

1 Introduction
Graph neural networks (GNNs) have attracted considerable
research interest recently [Wu et al., 2020] due to their su-
perior performance in various applications, such as bioinfor-
matics [Borgwardt et al., 2005], finance [Yang et al., 2019b],
chemistry [Xiong et al., 2019], social network analysis [Yang
et al., 2019a], etc. The typical framework of GNNs can be
formulated as message passing, which means node represen-
tations are learned by recursively aggregating the neighbor-
hood.

Despite the promising results achieved by GNNs, most
of them inevitably assume homophily, that is, the connected
nodes tend to have similar attributes or belong to the same
class (“birds of a feather flock together”) [McPherson et al.,
2001] as the example shown in Fig. 1 (a). However, nu-
merous graphs exhibit the “opposites attract” phenomenon,
which conflicts with the homophily assumption of GNNs. As
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Figure 1: (a) & (b) show patterns of homophily and heterophily
graphs. (c) demonstrates the GNN aggregation process for node 0
of (b). (d) our proposed path aggregation compared with (c).

the example in Fig. 1 (b) shown, the connected nodes tend to
have dissimilar attributes or belong to different classes which
leads to the formation of heterophily graphs [Newman, 2003].
For instance, in a heterosexual dating network, a candidate
tends to be attracted by one of the opposite gender.

Although GNNs perform well in homophily graphs,
they cannot achieve satisfactory performance in heterophily
graphs. Fig. 1 (c) gives us a potential explanation: to aggre-
gate the neighborhood of node 0, it is required to aggregate
node 1’s neighbors and node 2’s neighbors first. Since the re-
ceptive field of node 1 is only limited to the direct neighbor
0, 3, 4, and the receptive field of node 2 is limited to node 0,
5, 6, the aggregated features of node 1 and 2 becomes ( 1 )

and ( 1 ), which are indistinguishable to node 0. However,
the original node features of node 1 and 2 are different, indi-
cating the flawed aggregation process of GNNs.

In this paper, we shed light onto the path level patterns in
a graph, which can model both homophily and heterophily
graphs. First, due to the flexibility of the paths, both direct
adjacent and higher-order neighborhood information can be
retained rather than only depending on the first-order neigh-
boring nodes for aggregation. As depicted in Fig. 1(d), the
path on the left contains node 1 and 3, which cannot be aggre-
gated to node 0 simultaneously by GNN. Second, due to the
order information brought by the paths, contextual semantic
information can be captured to construct distinguishable em-
bedding. Different from Fig. 1(c), our method gathers three



types of paths: two of them go through node 1, forming ( )

by node 1 and 3, ( ) by node 1 and 4; the other one goes
through node 2, forming ( ) by node 2 and 6, which are quite
different for node 0. Although the paths of ( ) and ( ) con-
tains two similar node features, the path embedding is still
distinguishable because the order is different.

Based on aforementioned points, one natural implication is
to learn each node’s embedding by aggregating all involved
paths instead of its neighborhoods. However, the question
of how to obtain and encode the proper paths for extracting
sufficient information is quite challenging.

Firstly, to obtain diverse path information, one straight-
forward way is to enumerate all paths for each node. How-
ever, the number of paths grows exponentially in the recep-
tive field, especially when hub nodes are traversed. Thus, the
first challenge is how to define an appropriate sampler that
can avoid the over-expansion issue while retaining meaning-
ful structural information.

Secondly, as mentioned above, the order of node appear-
ance in a path is critical for capturing the heterophily in neigh-
borhood. However, most of existing GNNs aggregators are
not order sensitive and can not explicitly distinguish the in-
formation from different hops. Thus, how to design an order-
preservable aggregator is the second challenge.

Thirdly, nodes give preference to specific paths. For ex-
ample, paths near the target node are preferred by homophily
neighborhoods, whereas paths exploring deep receptive fields
are preferred by heterophily ones. Nonetheless, one actually
can hardly judge whether a graph is homophily or not with in-
sufficient label information. Thus, the third challenge is how
to capture the path preference of different nodes.

In this work, we introduce a structure-aware path aggre-
gation graph neural network (abbreviated as PathNet) to ad-
dress these challenges. To alleviate the over-expansion is-
sue and to preserve structural patterns, we introduce a max-
imal entropy path sampler. Moreover, we theoretically and
empirically prove that sampling an increasing amount of
paths approaches the infinite paths scenario at an exponential
rate. To encode paths while retaining the context of higher-
order neighborhoods, we introduce a structure-aware path en-
coder which possesses two advantages: preserving the or-
der through recurrent mechanism and capturing the contex-
tual structure by leveraging distance to the target node. After
the path encoding, we propose a path attention mechanism
to model the preference of paths for nodes with different ho-
mophily level of neighborhoods.

The main contributions of our work are as follows:
(1) We propose a novel path aggregation paradigm to cap-

ture the structure context information in both homophily
and heterophily graphs.

(2) We design an end-to-end model PathNet which lever-
ages order and distance information of path to encode
complex semantic information in graphs.

(3) Extensive experimental results demonstrate that our
model achieves superior performance by up to 10.08%
in the node classification task on heterophily graphs and
competitive results on homophily graphs.

2 Related Work
GNN methods have attracted considerable attention. GAT
[Veličković et al., 2018] introduces the attention mecha-
nism to parameterize the aggregation function. GIN [Xu et
al., 2019] proposes a graph model with the same expressive
power as WL graph isomorphism test. However, a majority
of these works are based on the homophily assumption [Yang
et al., 2018; Wu et al., 2017]. Thus, these approaches fail to
achieve satisfactory performance on heterophily graphs.

Recently, several models have emerged to cope with the
challenging and largely overlooked setting of heterophily.
MixHop [Abu-El-Haija et al., 2019] utilizes higher-order
graph convolutional architectures to overcome the limitation
of direct aggregation. Likewise, H2GCN [Zhu et al., 2020]
proposes to combine three components: ego- and neighbor
embedding separation, higher-order neighborhoods and inter-
mediate embedding. GPRGNN [Chien et al., 2021] lever-
ages the diffusion matrix for long-distance propagation and
proposes a pagerank-based model under heterophily settings.
FAGCN [Bo et al., 2021] puts forward high-pass and low-
pass filters to deal with both homophily and heterophily
graphs. Although some of them propose to utilize the higher-
order neighborhoods in aggregation process, they fail to cap-
ture the intrinsic semantic information since the order infor-
mation are omitted. Furthermore, most of them treat the
nodes in higher-order neighborhoods equally since they di-
rectly aggregate these nodes without distance information.

To the best of our knowledge, there are two existing
works that claim to employ the path to model graphs. Ge-
niePath [Liu et al., 2019] proposes an adaptive path layer
that can guide the breadth and depth exploration of the re-
ceptive fields. Nonetheless, instead of utilizing the concrete
paths, they name the receptive fields as receptive paths. SPA-
GAN [Yang et al., 2019c] conducts the operation of path-
based higher-order attention to explore the the topological in-
formation. However, each node influences the target node
only through the shortest distance and omit the structure of
higher-order neighborhoods. In general, feature propagation
in these models fails to capture the connections between di-
rect neighbors of target nodes and fails to encode different
structure into distinguishable embedding, which results in the
unsatisfactory performance.

3 PathNet
We begin with some necessary definitions.
Problem definition. Consider a graph G = (V, E), V is
the node-set and E is the edge-set. The adjacency matrix and
the node feature matrix of G is denoted by A ∈ {0, 1}|V|×|V|

and X ∈ R|V|×F respectively, where F is the dimension of
feature for each node. In this paper, we focus on the semi-
supervised node classification task. Specifically, given nodes
in training set TV with known labels yv and feature vectors
xv for v ∈ V , we aim to infer the unknown yu for all u ∈
(V − TV).
Homophily and heterophily. The concept of homophily
is derived from the tendency of a node to have the same
class as its neighbor. The homophily level can be quanti-
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Figure 2: The workflow of PathNet for node classification of node 0 with the walk length k = 3 . The color of node stands for label and the
number stands for node index.

fied by homophily edge ratio [Zhu et al., 2020], denoted as
h(G) = |{(u,v):(u,v)∈E∧yu=yv}|

|E| , which calculates the propor-
tion of the edges connect two nodes with the same label. The
lower h(G) implies more edges connecting nodes in different
classes, that is, stronger heterophily.

The paths have great potential to represent the complex
semantic information of graphs. Thus we propose PathNet
(Fig. 2) to utilizes the path aggregation paradigm aiming to
generalize GNNs for both homophily and heterophily graphs.
The paths are firstly sampled under the guidance of maximal
entropy random walk, which effectively explores the diversity
of the graph structure. Then the paths are encoded by send-
ing the node embedding sequences into the structure-aware
recurrent cell Φ with distance-aware component, which cap-
tures structural context and extracts semantic information. To
model the preference of each path embedding to the target
node, a path attention module is employed for path aggrega-
tion. Finally the node prediction zv0 can be obtained after a
non-linear transformation.

3.1 Maximal Entropy Path Sampler
To obtain the paths with a consideration of the efficiency, a
sampling strategy like random walk is required. However,
the conventional random walk (CRW) suffers from the iden-
tical treatment to different nodes and ignores the centrality
of nodes of a graph. To address these problems, we propose
to sample paths under the guidance of the maximal entropy
random walk (MERW), shown in Fig. 2, left. The MERW
seeks the paths in the orientation of entropy rate increase for
each step and incorporates the eigenvector centrality which is
widely applied to measure the importance of the nodes.

Consider a path sampled with length k from vi to vj , the
probability of the path is Pk

ij = pii1pi1i2 · · · pik−2ik−1
pik−1j ,

where pij is a element in transition matrix. As declared in
[Cover, 1999], the maximal entropy rate η of random walk on
a graph can be computed from the transition matrix P and the
stationary distribution π, which can be described as follows:

η = −
∑
i

πi

∑
j

pij ln pij . (1)

Moreover, the maximal entropy rate of random walk is
bounded by lnλ [Parry, 1964], where λ is the largest eigen-
value of A. In order to maximize the entropy rate of a
walk, MERW constructs the transition probabilities as pij =
Aijuj

λui
[Burda et al., 2009], where u = (u1, u2, · · · , un) is the
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Figure 3: Intuitive case where GNNs are not able to distinguish the
target nodes in (a) & (b), while our path-based aggregation with pa-
rameter sharing mechanism can capture the topological information
and make the embedding distinguishable (c) & (d). (Nodes with
similar characteristic represented as the same notation.)

normalized eigenvector. Note that the transition probabilities
are proportional to the eigenvector centrality guaranteeing the
MERW the ability to capture the structural context of nodes
in a graph. It can be reformulated into the maximal entropy
transition (MET) matrix, which is defined as

Pu =
D−1

u ADu

λ
, (2)

where Du = diag (u1, u2, · · · , un). In short, maximal en-
tropy path sampler not only maximizes the entropy rate but
also obtains the complex structual information of a graph.

3.2 Structure-aware Path Aggregator
To aggregate the path information, we propose a structure-
aware path aggregator. Specifically, we design a structure-
aware recurrent cell to encode the path embedding, which is
capable to incorporate the order and distance information of
each node in the path, so as to capture the semantic infor-
mation. Furthermore, we model the path preference to dis-
tinguish the importance of different paths and realize self-
adaptive path embedding aggregation.
Structure-aware recurrent cell. Although conventional
GNNs are capable of gathering the information of higher-
order neighborhoods, they inevitably lead to indistinguish-
able embedding for treating them in the same way and over-
look the global structure context of neighborhoods in graphs.
Fig. 3 (a, b) gives an intuitive case that a GNN within two lay-
ers generates indistinguishable embeddings of the target node
T in two graphs. Because from the GNNs’ point of view, only
the direct neighbors are visible for each node, and all nodes
in (a) and top three nodes in (b) share the identical neighbors.
Hence, the two graphs would generate the identical node em-
bedding of T after two-layer aggregation. On the contrary,



if we embed the distance to the target information into the
directed path sequence (shown in Fig. 3 c, d), the structural
information (i.e., closed triangle vs. open paths) is well pre-
served and the path embedding is distinguishable. Inspired by
this, we claim that the order and distance of each node are the
key information for capturing the structural context through
path.

Instead of aggregating each layer of nodes independently,
we propose a recurrent cell to encode path sequence, so as to
retain the order information of each node. We next introduce
the details of our structure-aware recurrent cell. Note that we
encode all the node feature X as node embedding I before
engaging the structural information, which is described as

I = σ (WinX+ bin) , (3)
where Win and bin are learnable parameters of the sigmoid
function σ. In order to capture the feature-based diffusion
structure, we construct structure-aware recurrent cell Φ as

rj = σ (Wr · hj−1 +Ud · Ij) ,
fj = σ (Wf · hj−1 +Ud · Ij) ,
oj = σ (Wo · hj−1 +Ud · Ij) ,

gj = tanh (Wg · hj−1 +Ud · Ij) ,
cj = fj ⊙ cj−1 + rj ⊙ gj ,

hj = ot ⊙ tanh (cj) ,

(4)

where hj denotes the latent embedding of node v at the j-th
step on the path, ⊙ is the Hadamard product and rj , fj ,oj

represent the input, forget and output gates, respectively. As
a part of the forget gate, gj contributes to the long term mem-
ory cell cj which filter the node feature along the paths. Con-
sidering the target node as the most basic part contributes the
most, the input sequence is reversed from the collection order
of the path (Fig. 2, Node embedding). Finally, we obtain the
final path embedding hp for the p-th path.

Considering that the path embedding is distance sensitive,
we employ a parameter sharing mechanism based on the node
distance to the path embedding computation. Specifically,
for each node in a path, we use the pre-calculated shortest
distance d from the target node as side information, and the
nodes with the same d share the same Ud during path encod-
ing (Eq. 4), so as to incorporate the distance information into
path embeddings and make them distance-aware.
Modeling path preference. Naturally, neighborhoods with
different homophily level have different path preferences.
For homophily neighborhoods, the path nearby the target
node may contribute more to the classification, while for het-
erophily ones, the paths to explore broader context of graph
structure will be preferred. However, the homophily level
of each neighborhood is hard to know. Thus, we model the
path preference for each node, that is, take different paths into
consideration and learn their importance to facilitate the self-
adaptive embedding aggregation.

More specifically, for a particular path p, we obtain its em-
bedding hp after Eq. 4, which is then concatenated with the
target node embedding Iv as the input for computing the pref-
erence coefficient sv,p by a trainable weight a. We calcula-
tion the preference coefficient sv,p as

sv,p = SOFTMAX(δ (a (Iv∥hp))) , (5)

where δ = LeakyReLU, and a is the trainable weights. In
the last step, we use the preference coefficient sv,p to weight
the path and make the final prediction zv by Wout and bout:

zv = σ

Wout

Iv∥
∑
j∈p

sv,php

+ bout

 . (6)

The computational complexity of PathNet is discussed in the
Appendix A.

4 Theoretical Analysis
4.1 Convergence of Path Sampler
As illustrated in Sec. 3.1, we propose to sample paths un-
der the guidance of MERW that retains the structural infor-
mation of the neighborhoods. Moreover, sampling various
paths composed of different node features helps to capture
more contextual patterns of the target node. In this section,
we prove that sampling finite paths is indeed enough to cover
the overall path patterns. Assigning the same tag l to nodes
with similar features, we can define an attributed path as fol-
lows: For different paths {v1, v2, ..., vk} and {va, v2, ..., vk}
of length k, if node features of v1 and va are similar, they both
count as the same attributed path sequence of {l1, l2, ..., lk}.
Hence, an attributed path can be generated only if nodes with
dissimilar features are introduced. The more attributed paths
we sample, the more semantic information we can capture
from the neighborhoods.

Attributed path sampling deviation is defined as the differ-
ence between the proportion of attributed paths from finite
sampling and the real attributed path proportion. The expo-
nential convergence relationship between the finite sampling
number of paths and the probability of attributed path sam-
pling deviation being smaller than a certain constant is estab-
lished below:
Theorem 1. Given a graph with adjacency matrix A, for any
ϵ > 0, the probability of the attributed path sampling devia-
tion being larger than ϵ decreases exponentially as the num-
ber of attributed paths M increases.

The proof can be found in Appendix B. The theory in-
dicates that although our method samples a finite number of
paths, the ability to capture the semantic information grows
tremendously when the number of sampled paths increases,
revealing the feasibility of gathering enough representative
information of neighbors by sampling an achievable number
of paths.

4.2 Expressive Power of PathNet
PathNet provides a more intact receptive field for target
node and generates more distinguishable embedding. Neither
stochastic GNNs like GraphSAGE nor deterministic GNNs
like GCN can capture the connections between direct neigh-
bors of a node. Because they use the permutation invari-
ant operation such as mean or max pooling for neighboring
nodes ignoring the connections between them. Even for the
attentive GNNs like GAT, the attention coefficient of neigh-
bors still cannot indicate whether they are connected or not.
Instead, our method captures rich structural information by



sampling paths in entire neighborhood that contain the edges
omitted by GNNs, and also our aggregation method main-
tains to be permutation invariant because both directions of
the edges between direct neighboring nodes can be sampled.
Furthermore, as shown in Fig. 3, the distance sensitive mech-
anism generates the distinguishable embedding for different
structure which differs from the conventional aggregation.

5 Experiments
In this section, we aim to practically validate our proposed
model by evaluating its performance on semi-supervised node
classification task.1 To be specific, we want to answer the
following questions:
Q1 Does PathNet achieve satisfactory performance on both

homophily and heterophily graphs?
Q2 How does each component contribute to the perfor-

mance of our model?
Q3 Is the maximal entropy path sampler able to capture

enough structural information to achieve a satisfying
performance?

Q4 Can PathNet actually improve the expressive power by
capturing the structural context of neighborhoods?

5.1 Experiment Setup
To answer Q1, we evaluate our model on the semi-supervised
node classification with seven real world graph datasets: (1)
three widely adopted citation network benchmark: Cora,
Pubmed and Citeseer[Kipf and Welling, 2017] with strong
homophily; (2) four representative heterophily datasets that
span across various domains: Cornell[Rozemberczki et al.,
2021], BGP[Luckie et al., 2013], NBA[Dai and Wang, 2021],
Electronics[McAuley et al., 2015] collected from web pages,
BGP network, NBA players and Amazon product catalog
separately. The experiment setting and hyperparameter can
be found in Appendix C.
Baselines. We compare PathNet with the following states
of the art baselines: (1) Traditional methods: multi-layer per-
ceptron (MLP, graph-agnostic), several classical GNN mod-
els GraphSAGE [Hamilton et al., 2017], GAT [Veličković et
al., 2018] and GIN [Xu et al., 2019] under the assumption of
homophily are used for fundamental evaluation. (2) Models
for heterophily graphs: MixHop [Abu-El-Haija et al., 2019],
H2GCN [Zhu et al., 2020], GPRGNN [Chien et al., 2021],
FAGCN [Bo et al., 2021]. (3) Models using path or node
position: GeniePath [Liu et al., 2019] adaptively explores
the receptive field which is termed as receptive paths. SPA-
GAN [Yang et al., 2019c] conducts path-based higher-order
attention. P-GNN [You et al., 2019] emphasizes the impor-
tance of encoding the position of each node.

5.2 Comparison with State-of-the-art Models
The results are reported in Tab. 1 (upper half). For H2GCN,
we use the best result between the H2GCN-1 and H2GCN-2.
“OOM” means out of memory.

Our approach PathNet outperforms all the baselines on all
four heterophily graphs, demonstrating the necessity of intro-
ducing path aggregation paradigm. Specifically, our model

1Codes are available at https://github.com/zjunet/PathNet

achieves an improvement of 9.96%, 9.61% and 15.3% on
average against the traditional methods, the models for het-
erophily graphs and the models using path or node posi-
tion respectively. (The calculation of average improvement
is to average the result of different methods within the same
dataset, and then average their results cross all datasets.) The
performance proves the effectiveness of our model to capture
the complex structure information on heterophily graphs.

For homophily graphs, our model achieves best perfor-
mance on Pubmed and Citeseer and presents highly compet-
itive results on Cora (1.14% decline compared to the best).
Specifically, our model outperforms the three types of mod-
els mentioned in baselines by 3.21%, 0.92% and 4.82% on
average. Compared with the performance on heterophily
datasets, the improvement of our model is not that notable
on homophily graphs, which might result from the similarity
of the node features in the nearest neighborhood caused by
the high homophily level. In summary, our method achieves
the best performance on heterophily graphs and competitive
performance on homophily graphs.

5.3 Ablation Study
To answer Q2, we conduct an ablation study by changing
parts of the entire framework. The results are shown in Tab. 1
(lower half). When we replace the MERW with CRW while
keeping the number and length of paths consistent (RW-
PathNet), the performance drops by 1.16% on average across
all datasets. It shows that MERW indeed preserves the com-
plex structure context of neighborhoods. Furthermore, since
the structure-aware recurrent mechanism preserves the se-
mantic information contained in the maximal entropy paths,
when we use MLP as a substitute for the recurrent cell ϕ
(PathNet-MLP), the performance is reduced by an average
of 2.43%, revealing that the recurrent mechanism which re-
tains the node order information is helpful to capture con-
text in neighborhoods. Moreover, the mean accuracy drops
by 1.85% and 1.73% on average when replacing the param-
eter sharing recurrent cell with conventional GRU [Cho et
al., 2014] and LSTM [Hochreiter and Schmidhuber, 1997]
(PathNet-LSTM/PathNet-GRU). We can tell from the per-
formance that the LSTM version and the GRU version are
slightly different on different datasets though they are con-
sistently lower than the proposed parameter sharing recur-
rent cell ϕ, which indicates that parameter sharing mechanism
for path distance-aware contributes to perceive the contextual
structure of neighbors. In addition, path preference modeling
contributes to our model by an average of 1.65% and 2.84%
compared with replacing the path attention into mean/sum
pooling respectively (PathNet-Mean/PathNet-Sum), indicat-
ing the effectiveness of choosing different paths in different
neighborhoods. In summary, even some components are re-
placed, our model that explicitly exploits paths still gains sat-
isfactory results.

5.4 Model Variants
To answer Q3, we conduct experiments by varying the num-
ber and length of maximal entropy paths. Take NBA dataset
with path length of 3 as an example (Fig. 4(a)), we change
the number of sampled paths for every epochs at increasing



Cora Pubmed Citeseer Cornell NBA BGP Electronics
#Hom. ratio 0.81 0.80 0.74 0.30 0.39 0.37 0.25

B
as

el
in

es
MLP 74.75± 2.22 86.65±0.35 72.41±2.18 81.08±6.37 59.21±6.92 63.39±0.34 75.03±0.08
GIN 84.97±1.51 86.97±0.53 72.19±1.74 58.10±5.70 65.47±6.85 OOM OOM
GAT 82.68±1.80 84.68±0.44 75.46±1.72 58.92±3.32 67.19±1.04 62.25±0.90 64.64±0.27

GraphSage 86.90±1.04 88.45±0.50 76.04±1.30 75.95±5.01 61.70±2.40 61.71±0.85 74.92±0.19
MixHop 85.41±1.61 86.38±0.46 75.43±1.89 72.51±6.36 68.89±5.95 64.80±0.83 67.84±0.50
H2GCN 86.21±0.98 87.86±0.19 76.73±1.48 81.27±4.63 66.67±7.02 65.13±1.01 73.92±0.52

GPRGNN 86.00±2.46 86.56±0.29 78.45±0.27 50.82±3.28 48.25±4.97 61.49±0.40 75.79±0.16
FAGCN 86.30±1.74 88.50±0.27 76.20±1.45 72.70±4.50 63.49±3.89 64.48±0.55 71.10±2.02
P-GNN 68.05±1.30 84.97±0.38 64.81±1.29 58.65±3.21 58.41±7.40 54.04±3.81 57.25±2.78

GeniePath 85.15±0.65 86.50±0.34 76.46±1.42 59.19±4.43 68.73±5.41 63.15±2.94 73.39±0.35
SPAGAN 86.12±0.54 85.10±0.19 77.41±0.82 55.41±2.18 53.65±7.23 52.59±0.67 53.93±5.08

A
bl

at
io

n

PathNet-MLP 82.89±2.84 87.86±0.07 75.78±1.50 90.54±1.35 69.05±6.08 64.36±0.54 75.81±0.58
PathNet-GRU 84.76±1.52 87.89±0.12 76.57±1.08 90.74±1.81 69.52±7.16 64.46±0.76 76.16±0.52

PathNet-LSTM 84.39±2.77 87.89±0.14 76.44±2.86 91.35±1.62 69.37±6.27 65.19±0.79 76.12±0.39
RW-PathNet 85.08±1.17 87.84±0.34 78.54±2.13 90.27±2.16 71.27±5.65 64.92±0.61 76.31±0.45

PathNet-Mean 83.46±2.36 88.18±3.94 76.59±1.61 91.08±2.43 70.16±6.18 64.81±0.77 76.85±0.55
PathNet-Sum 84.21±1.43 86.93±0.27 74.80±2.44 89.19±2.70 67.70±6.44 65.39±0.83 75.06±0.44

PathNet 85.76±2.67 88.92±0.21 77.98±2.40 91.35±2.91 71.69±4.83 65.72±0.66 76.97±0.84

Table 1: Mean accuracy and standard deviation of PathNet on node classification compared with baselines and ablation study.
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Figure 4: Model variants of different number (a) and length (b) of
sampled paths.

intervals for the performance becomes stable when the num-
ber is around 40. Before performance convergences, the per-
formance increases with the number of paths increasing, as
we analysis in Sec. 4.1. Since we train our model for 1000
epochs, the total number of paths sampled for each node dur-
ing the entire training process is 1000 times the number of
paths per epoch. Thus, even when the number of path is 1 per
epoch, the performance is just slightly lower than the average
of baselines.

Moreover, when we change the path length between 2 to 5
(Fig. 4(b)), the changes of performance varies with datasets.
Generally, the performance of these datasets forms a peek
shape. The performance of Cora, Citeseer and NBA peeks
at the length of 3 and the other datasets peeks at the length
of 4. In summery, the experiments reflect the stability and
capability of PathNet on mining the structure information.

5.5 Synthetic Experiment
To answer Q4, we design a synthetic experiment inspired
by [Chen et al., 2021]. [Chen et al., 2020] proves that the
capability to count substructures indicates the strength of the
expressive power. Thus, we aim to test the expressive power
of our model by evaluating the ability of finding out the at-
tributed path (mentioned in Sec. 3.1) with the largest number
since attributed paths can be seen as a kind of substructure.
The datasets are synthesized as follows: we use Cora and

Citeseer as graph structure and change the node attributes
into a 2-dimensional one-hot vector The vector is assigned
as blue if the original node index is even, and as red if the
original node index is odd. Since it has two kinds of node at-
tributes, there are eight different attributed paths of length 3.
We number different kinds of attributed paths as indexes and
there might be a certain amount of each attributed path for
one node. The node labels are defined as the indexes of the
largest number of attributed path. We use 10 randomly gen-
erated splits with 60%, 20%,and 20% for training, validation
and testing. The baselines include GIN which achieves the
expressive power of the WL test [Xu et al., 2019], GAT which
utilizes the attention mechanism and GPRGNN designed for
heterophily graphs.

As shown in Tab. 2, our model significantly outperforms
other models on both datasets, which proves that PathNet in-
deed boosts the expressive power as analysised in Sec. 4.2.

Syn-Cora Syn-Citeseer
#Hom. ratio HG 0.37 0.39

GIN 51.40±1.55 59.09±2.71
GAT 36.96±1.60 47.44±1.76

GPRGNN 43.62±1.69 53.95±1.87
PathNet 57.59±1.54 71.42±1.15

Table 2: Node classification on synthetic datasets.

6 Conclusion
We propose a novel path aggregation paradigm and design
PathNet to capture the semantic and structural information in
both homophily and heterophily graphs. Firstly, we sample a
reasonable number of paths. Then, we proposes a structure-
aware recurrent cell with the parameter sharing mechanism
to aggregate each path. Furthermore, our path attention mod-
ule can distinguish the preference of paths. As an end-to-
end model, we achieve the SOTA performance on both het-
erophily and homophily graphs.



A Computational Complexity
Here we discuss the computational complexity of PathNet. In
general, our method is rather efficient. Concretely, the pre-
processing includes the path sampling and shortest distance
calculation, with the precise time complexity of O(dkn),
where n denotes number of nodes, d is the average degree
of the graph (d = 3.89 in Cora) and k is the length of sam-
pled paths (k = 4 in our experiments). Moreover, the overall
time complexity of PathNet is O(dkn + mtnhh′), where m
denotes the number of sampled path (m = 40 in our experi-
ments), t is the iteration (epoch) value, h and h

′
represent the

dimensions of input and output.

B Proof of Theorem 1
Proof. A tag-limited transition matrix A(l) is derived by set-
ting the same elements as the original adjacency matrix A if
the end node can be tagged as l, while other elements are
tagged as zero:

A(l)
i,j =

{
Ai,j , Yj = l,

0, otherwise.
(7)

During the path sampling process, we sample the neighbors
with the probability matrix of maximal entropy calculated as
the Eq. 2. Thus, the probability matrix P{l1,l2,...,lk} of sam-
pling a attributed path is as follows:

P{l1,l2,...,lk} =

k∏
i=1

(P(li)
u ) =

k∏
i=1

(
D−1

u A(li)Du

λ
). (8)

The element in the i-th row and j-th column of P{l1,l2,...,lk}

is the probability of walking from i to j through an attributed
path. Moreover, PS,{l1,l2,...,lk}, the probability of sampling
an attributed path starting from node S, is derived as follows:

PS,{l1,l2,...,lk} =

|V|∑
i=1

P{l1,l2,...,lk}
S,i . (9)

Here, NS,{l1,l2,...,lk} denotes the number of attributed paths in
m times of sampling from graph. Since we use the same sam-
pling strategy for every epoch, the probability of attributed
paths being sampled is PS,{l1,l2,...,lk}, while the probability
of not being sampled is 1 − PS,{l1,l2,...,lk}. Whether an at-
tributed path would be sampled in two samples is independent
and identically distributed. Therefore, NS,{l1,l2,...,lk} follows
a binomial distribution:

NS,{l1,l2,...,lk} ∼ B(m,PS,{l1,l2,...,lk}). (10)

According to Hoeffding’s inequality[Hoeffding, 1963], we
have

Pr(|
NS,{l1,l2,...,lk}

M
−PS,{l1,l2,...,lk}| > ϵ) ≤ 2 exp (−2ϵ2m).

(11)
Thus, as the number of sampled paths m increases, the prob-
ability on the left of inequality decreases exponentially.

C Experiment Settings and Hyperparameters
As important parts of preprocess, the path sampling and
shortest distance calculation between nodes are finished be-
fore model training. We use 10 random splits with 48%,
32%, and 20% for training, validation and testing. For Cora,
Pubmed, Citeseer and Cornell, we use the the same splits pro-
vided by [Zhu et al., 2020]. For NBA, BGP, and Electronics,
we randomly generate the 10 splits. We use 1000 epochs for
each split. The mean accuracy and standard deviation are cal-
culated from the 10 splits. For our method and baselines, we
choose the hyper-parameter settings which can make them
perform best. For simplicity, we set the number of paths as
40 for both heterophily and homophily graphs. Moreover, we
set the length of paths as 3 for Cora, Citeseer and NBA while
4 for other datasets.
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